

EE542 Final Project

Support Vector Machines in Hardware

Raghunandan Kumaran

Introduction

Cognitive systems capable of gathering information, detecting significant events, making
decisions and/or coordinating operations are of immense value to a wide variety of
application domains, from biomedical devices to automated military units. The core
functionality of such machine learning involves mathematical kernels employing
commonly used operators, typically implemented as software-based solutions executing
on general-purpose machines. Unfortunately, such solutions require significant
resources for execution and may consequently be unsuitable for portable applications.
Efficient hardware implementations of machine-learning techniques yield a
variety of advantages over software solutions: increased processing speed, reliability and
battery life as well as reduced cost and complexity.

However, aside from a plethora of work in neural-network implementations, there are
few hardware-based machine learning technologies. There have been a few attempts at
implementing SVMs in hardware, even though their advantage and robustness far
exceeds that of neural networks. Perhaps the reason for this could be that neural networks
lend themselves naturally for hardware implementation, while SVM by their design look
more suited for software or a processor based design. Another reason is that training a
neural network is a lot simpler than SVM, since neural nets use a gradient based
optimization while SVMs use quadratic optimization. This is also a main reason as to
why there have been very little hardware implementations of SVMs, since it is very hard
to implement in hardware with a reasonable degree of accuracy.

Typical applications of machine learning do not really need a capability to train and adapt
very frequently. In a co-design approach to embedded systems, if and when new data is
available and must be adapted to, it can be transmitted to a host machine where the model
can be adapted to the new and then transmitted back to the hardware for use.
In this project my aim is to try a simple SVM implementation for both linear and non-
linear kernels. I further plan to make use of this implementation for implementing an
SVM based face detection scheme.

Support Vector Machines

The Support Vector Machine (SVM) algorithm is based on statistical learning theory. A
simple and intuitive algorithm, it performs excellently for complex real-world problems
that may be difficult to analyze theoretically. SVMs are an extension of linear models
that are capable of nonlinear classification. Linear models are incapable of representing a
concept with nonlinear boundaries between classes. SVMs employ linear models to
represent nonlinear class boundaries by transforming the input, or instance
space, into a new space using a nonlinear mapping. This transformation is facilitated
through the use of kernels. The SVM algorithm can be treated linearly within the instance
space, whereas the choice of various kernels may map the core operations transparently
to a higher dimensional space. Consequently, complex pattern recognition and
classification approaches can abstractly be represented linearly. Following this
transformation, a Maximum Margin Hyperplane (MMH) that separates the instances by
class is learned, thereby forming a decision boundary. The MMH comes no closer to a
given instance than it must; in the ideal case it optimally separates classes. Support
vectors are the training instances closest to the MMH. A set of support vectors thus
defines the decision boundary for a given set of instances. This simplifies the
representation of the decision boundary since other training instances can be disregarded.

SVM training is a complex quadratic optimization problem for obtaining the support
vectors xi (with class values yi), their coefficients α, and a threshold value b. Support
Vector classification (in a simple two-class problem) simply looks at the sign of a
decision function. A test instance x is classified by the following decision function

The choice of the kernel function , K(xi,xj) and the resultant feature space determines the
functional form of the support vectors; thus, different kernels behave differently. Some of
the commonly used kernels are :
Linear: K(X,Y) = X.Y

Polynomial: K(X,Y) = (1 + X.Y)d

Radial Basis function: K(X,Y) = exp(-||X-Y||2/2σ2)

SVM based Face Detection

Face detection is an application where SVMs have demonstrated to be very effective and
very efficient. There have been quite a few results that show that SVM based
implementation outperform Neural nets.

The actual underlying problem is essentially a binary classification problem. We need to
determine whether a give image is a face or non-face. Extracting features suitable for this

)),(sgn()(bxxKyx
j

jiii += ∑αφ

problem is the main difference between this and any other classification problem. A very
simple approach to face detection is to generate very simple features. A very common
approach to generating suitable features for face detection is to perform histogram
equalization on the image, concatenate the rows to form a single feature vector and then
normalize the feature vector. This simple feature vector has worked quite well in many
implementations. To be more robust to resolution and pose issues, a resolution pyramid
could be used followed by affine transformation.

Once the feature vectors have been generated, the normal SVM training procedure can be
employed. Features for the test images are generated in the same way as the training
samples and are then classified using the trained SVM.

SVM Implementation

The above flowchart shows the basic idea behind the SVM implementation. Each
incoming data vector is stored in a buffer, while the SVM model is stored in another
buffer. The kernel computation unit performs the kernel computation and result
accumulation for the vector. The result is then transferred to a register, where the MSB of
the output is the class of the test vector.

ROM
(model)

RAM
(data)

Address
generator

Address
generator clock

FP
multiplier

FP accumulator
Output

Register

If the data and the model is stored on off board memory, the IO is performed first to get
them onboard, so as to have faster access. This of course depends on the size of the data
set. If it is too large, then it is periodically buffered. The main computational units are the
floating multiplier and the floating point accumulator units. Depending on the type of the
kernel the multiplication is repeated as many times as required. In my case I implemented
a linear and a quadratic kernel which is (1+(X.Y))2. So in the linear case there are only N
multiplications for each sample, where N is the number of features in the feature vector,
while in the quadratic case there will be 2N multiplications for each sample. If other
kernels are to be used, a Look up table based implementation is more suitable. For
example if a Radial basis kernel is to be used a sufficiently large LUT containing pre-
computed Gaussian values can be used. Once the individual multiplications are
completed, they are summed up in the accumulator and the bias term is added to it to get
the output. So for each sample there will be N+1 floating point additions. Therefore for
each sample, in the linear kernel case N multiplications and N+1 additions are required.
This basic implementation was implemented as a schematic in Quartus.

Implementation on the DE1 board

The schematic of the Altera DE1 board is shown above. The basic code structure in
verilog has been provided. This code includes the JTAG interface and the USB blaster.
The control panel software communicates to the DE1 board through the USB blaster. The
control panel can read from the memories SDRAM and SRAM and can also control the
VGA controller.

USB blaster
JTAG controller

LED &
Keys

SDRAM

SRAM

VGA
controller To CRT

Control
Panel

(PC side)

SVM
module

For the DE1 board I implemented the code in verilog. I started with the DE1 control
panel code and then added multiplexed interfaces to the SDRAM and SRAM and also
setting up access for the VGA control from the SRAM.

The structure of the code is as follows
1) Store the input data (test image in the face detection) and the model on the SDRAM.
2) The output data is stored on the SRAM.
3) The SVM module is the main code that reads in the data and performs SVM
computations and write the output to memory.
4) In the face detection case, the input image is stored is in the SDRAM and also the
SRAM
5) The SVM module then reads in a 20x20 image from the SDRAM and then creates the
feature vector as described previously.
6) The SVM computations are performed on this test vector and if it is detected to be a
face region, a + is marked in the centre of the corresponding window on the SRAM.
7) The algorithm continues by scanning the image in row order.

There were quite a few problems with the verilog implementation. The problems start
with verilog, since it is not well suited for complex computations. It started with
accessing the data from memories, since I started out with a behavioral code instead of
more suitable structural verilog code (I put it down to my largely C and software
background !). This was causing bus contentions and timing errors as result the data was
not being read properly. So I slowly moved parts of the code into structural and finally
the data access and read and write was successful. Then started the problems with the
floating multiplications and additions. I used the Altera fpmult and Altera fpadd_sub
code for the floating point multiplications and additions. These codes have their own
clock delays which needed to incorporated into the timing. Again, my way of handling
this problem was a typical C code kind of verilog code with a lot of if-else nested
structures which didn’t seem to work. As a result the code is still not working. I’m still
working on modifying the code, basically moving it to better structural verilog design in
which the timing is lot more easy to handle. A better option which I haven’t explored
much, would be to move to SystemC.

Another change I feel I need to make is getting rid of the floating point computations by
moving to a logarithmic number system (LNS). Timing issues are less severe in integer
arithmetic than in floating point. Thus LNS should work better than floating point. For
addition in LNS, a lookup table system can be implemented. But one draw back of
lookup tables is that we need to know the dynamic range of data to determine the size of
the lookup tables.

The part of the code for the face detection was again beset with the same kind of
problems. The problem seems to be with the addressing for getting the 20x20 image from
the memory. Since the image is stored sequentially in the memory an addressing
algorithm needs to be used to access the pixel that form the 20x20 window. My current
code for this is causing bus contentions, i.e the memory is not being in the read in the

order I want. And added to this problems with the fpmult and fpadd_sub as described in
the previous paragraph, this code is not working yet.

Results

I have the basic results for the schematic implementation. The input dataset used was the
Iris dataset from the UCI machine learning repository. The data consists of measurement
of the some features of the petals of the Iris flower to determine whether it is of the
family Iris-setosa or Iris-vestibula. The data consists of 150 samples. Each sample has 4
real valued features.
The software SVM implementation was done using freely available svmlight software.
Svmlight is a commonly used software that is very fast and works quite well for small to
medium sized data sets.

 Kernel type Hardware Software

Linear 92.3% 100%

Quadratic 88.1% 100%

The above table gives the accuracy of classification for the Iris dataset. We see that the
accuracy for the software is 100%, i.e the 2 classes are perfectly separable. The hardware
accuracy is significantly less, which I put down mainly to the timing issues. Due to the
timing glitches the model and data features go out of sync, which causes the wrong data
to be multiplied and thus results in the wrong result.

The verilog code for the SVM module is added in the appendix.

Conclusion

The project did not work as well as I expected. The schematic SVM implementation
worked only reasonably well, but the main face detection part did not work at all, which
was a huge disappointment. However there are some positives that I draw from this
project. Firstly this was the first time since I have implemented anything this big in
verilog and in hardware. So the experience of implementing a complete project was very
useful. It also gave me a lot of insights into the vast differences between implementing in
hardware and software. Nothing can be taken for granted when working with hardware,
where even a small glitch can cause huge errors. Clock synchronization is vital when
working with hardware and therefore a lot of care needs to be taken when working with
behavioral verilog code.

I plan to fix the bugs in my code and get it to work as it should. A future improvement
could be implementing this in SystemC which is much better than verilog. Once it is

implemented successfully, the face detection algorithm can be easily extended to face
recognition, which has better than utility than just face detection

References

• Hardware-based support vector machine classification in logarithmic
number systems Khan, F.M.; Arnold, M.G.; Pottenger, W.M.
Circuits and Systems, 2005. ISCAS 2005

• Bernhard Schölkopf, Christopher J.C. Burges, and Alexander J. Smola (editors).
"Advances in Kernel Methods: Support Vector Learning". MIT Press,
Cambridge, MA, 1999

Code references:
Altera corporation
Altera DE1 board cd

Appendix A:

svm_module.v

module
svm_module(iSelect_SR,iSelect_SDR,iDATA,oDATA,oADDR_SDR,oADDR_SR,islow
CLK,ifastCLK,oLED_GREEN,key3,oLED_RED,key2);

//Fixed for reading from SDRam and write to SRAM

input [1:0] iSelect_SR;
input [1:0] iSelect_SDR;
output reg [21:0] oADDR_SDR;
output reg [17:0] oADDR_SR;
output reg [15:0] oDATA;
input [15:0] iDATA;

input islowCLK;
input ifastCLK;
input key3;
input key2;

output reg [8:0] oLED_GREEN;

output reg [17:0] oLED_RED;

parameter MAX_COUNT = 1000;
parameter MAX_ADDR = 10;
reg [15:0] idata;

parameter num_test_points = 30;
parameter vec_len = 3;
parameter model_start_address = 481;
parameter BIAS = 32'h3fe88f6f; //-1*b;

reg model_loaded;
reg data_loaded;
reg [17:0] count1;
reg [17:0] count2;
reg [17:0] count3;
reg [31:0] model [vec_len:0];
reg [31:0] data [vec_len:0];
reg [31:0] temp;
reg [31:0] result;
wire [31:0] result1;
reg [15:0] model_count;
reg [15:0] data_count;
reg [15:0] mult_count;
reg [15:0] data_len;
wire [31:0] out;
reg [31:0] data1;
reg [31:0] data2;
reg [3:0] byte_count;

wire clk_input;
reg do_mult;
reg ALL_DONE;
reg result_ready;
reg [5:0] mult_tick;

assign clk_input = ifastCLK & do_mult;
assign result1 = out;

altfp_mult0 m1 (clk_input,data1,data2,out);

initial begin
count1 = model_start_address;
count2 = 0;
count3 = 0;

model_count = 0;
data_count = 0;
data_len = 0;
result = 0;
//result1 = 0;
mult_count = 0;
do_mult = 0;
ALL_DONE = 0;
mult_tick = 0;
result_ready = 0;
oLED_GREEN[0] = 0;
byte_count = 0;
end

//always @(posedge iCLK or negedge key3)
//always @(posedge key2 or negedge key3)
always @(posedge islowCLK or negedge key3)
begin
 if(posedge islowCLK)
 begin
 count1 = model_start_address;
 count2 = 0;
 count3 = 0;
 model_count = 0;
 data_count = 0;
 data_len = 0;
 result = 0;
 //result1 = 0;
 mult_count = 0;
 do_mult = 0;
 ALL_DONE = 0;
 mult_tick = 0;
 result_ready = 0;
 oLED_GREEN[0] = 0;
 byte_count = 0;
 end
 else if(iSelect_SDR == 2 && iSelect_SR == 2 && !ALL_DONE)
 begin
 if(!model_loaded)
 begin
// oADDR_SDR = count1 + model_start_address;
 oADDR_SDR = count1;

 if (byte_count == 0)
 temp[31:16] = iDATA;
 else if (byte_count == 1)

 temp[15:0] = iDATA;

 //oLED_RED = iDATA;
 count1 = count1 + 1;
 //oADDR_SDR = count1;
 byte_count = byte_count + 1;
 if (byte_count == 2)
 begin
 model[model_count] = temp;
 if (model_count >= vec_len)
 model_loaded = 1;

 model_count = model_count+1;
 byte_count = 0;
 end

 end
 else if (!data_loaded)
 begin
 oADDR_SDR = count2;
 if (byte_count == 0)
 temp[31:16] = iDATA;
 else if (byte_count == 1)
 temp[15:0] = iDATA;

 oLED_RED = count2;
 count2 = count2 + 1;
 byte_count = byte_count + 1;
 if (byte_count == 2)
 begin
 data[data_count] = temp;
 if (data_count >= vec_len)
 begin
 data_loaded = 1;
 data_count = 0;
 data_len = data_len +1;
 //oLED_GREEN[6:1] = data_len;
 end
 data_count = data_count+1;
 byte_count = 0;
 end

 end
 else if (data_loaded && model_loaded && !result_ready)
 begin

 data1 = model[mult_count];
 data2 = data[mult_count];
 do_mult = 1;
// oLED_RED = result1;

 temp = temp + 1;
 temp = temp + 1;
 temp = temp + 1;
 result = result + result1 ;
 if (mult_count >= vec_len)
 begin
 do_mult = 0;
 result_ready = 1;
 data_loaded = 0;
 mult_count = 0;
 end
 mult_count = mult_count+1;
 do_mult = 0;

 end
 else if (result_ready)
 begin
 oLED_RED = result[31:16];
 result = result + BIAS;
 oADDR_SR = count3;
 oDATA = result[31:31];
 //oDATA = result;
 count3 = count3 + 1;
 if (data_len > num_test_points)
 begin
 ALL_DONE = 1;
 oLED_GREEN[0] = 1;
 end
 result_ready = 0;
 result = 0;
 end

 end
end

endmodule

