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Introduction 
 
Cognitive systems capable of gathering information, detecting significant events, making 
decisions and/or coordinating operations are of immense value to a wide variety of 
application domains, from biomedical devices to automated military units. The core 
functionality of such machine learning involves mathematical kernels employing 
commonly used operators, typically implemented as software-based solutions executing 
on general-purpose machines. Unfortunately, such solutions require significant 
resources for execution and may consequently be unsuitable for portable applications. 
Efficient hardware implementations of machine-learning techniques yield a 
variety of advantages over software solutions: increased processing speed, reliability and 
battery life as well as reduced cost and complexity. 
 
However, aside from a plethora of work in neural-network implementations, there are 
few hardware-based machine learning technologies. There have been a few attempts at 
implementing SVMs in hardware, even though their advantage and robustness far 
exceeds that of neural networks. Perhaps the reason for this could be that neural networks 
lend themselves naturally for hardware implementation, while SVM by their design look 
more suited for software or a processor based design. Another reason is that training a 
neural network is a lot simpler than SVM, since neural nets use a gradient based 
optimization while SVMs use quadratic optimization. This is also a main reason as to 
why there have been very little hardware implementations of SVMs, since it is very hard 
to implement in hardware with a reasonable degree of accuracy. 
 
Typical applications of machine learning do not really need a capability to train and adapt 
very frequently. In a co-design approach to embedded systems, if and when new data is 
available and must be adapted to, it can be transmitted to a host machine where the model 
can be adapted to the new and then transmitted back to the hardware for use.  
In this project my aim is to try a simple SVM implementation for both linear and non-
linear kernels. I further plan to make use of this implementation for implementing an 
SVM based face detection scheme. 
 
 
 



Support Vector Machines 
 
The Support Vector Machine (SVM) algorithm is based on statistical learning theory. A 
simple and intuitive algorithm, it performs excellently for complex real-world problems 
that may be difficult to analyze theoretically. SVMs are an extension of linear models 
that are capable of nonlinear classification. Linear models are incapable of representing a 
concept with nonlinear boundaries between classes. SVMs employ linear models to 
represent nonlinear class boundaries by transforming the input, or instance 
space, into a new space using a nonlinear mapping. This transformation is facilitated 
through the use of kernels. The SVM algorithm can be treated linearly within the instance 
space, whereas the choice of various kernels may map the core operations transparently 
to a higher dimensional space. Consequently, complex pattern recognition and 
classification approaches can abstractly be represented linearly. Following this 
transformation, a Maximum Margin Hyperplane (MMH) that separates the instances by 
class is learned, thereby forming a decision boundary. The MMH comes no closer to a 
given instance than it must; in the ideal case it optimally separates classes. Support 
vectors are the training instances closest to the MMH. A set of support vectors thus 
defines the decision boundary for a given set of instances. This simplifies the 
representation of the decision boundary since other training instances can be disregarded. 
 
SVM training is a complex quadratic optimization problem for obtaining the support 
vectors xi (with class values yi), their coefficients α, and a threshold value b. Support 
Vector classification (in a simple two-class problem) simply looks at the sign of a 
decision function. A test instance x is classified by the following decision function 
 
 
 
 
The choice of the kernel function ,  K(xi,xj) and the resultant feature space determines the 
functional form of the support vectors; thus, different kernels behave differently. Some of 
the commonly used kernels are : 
Linear:  K(X,Y) = X.Y 
 
Polynomial: K(X,Y) = (1 + X.Y)d 
 

Radial Basis function: K(X,Y) = exp(-||X-Y||2/2σ2   ) 
 
SVM based Face Detection  
 
Face detection is an application where SVMs have demonstrated to be very effective and 
very efficient. There have been quite a few results that show that SVM based 
implementation outperform Neural nets. 
 
The actual underlying problem is essentially a binary classification problem. We need to 
determine whether a give image is a face or non-face. Extracting features suitable for this 
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problem is the main difference between this and any other classification problem. A very 
simple approach to face detection is to generate very simple features. A very common 
approach to generating suitable features for face detection is to perform histogram 
equalization on the image, concatenate the rows to form a single feature vector and then 
normalize the feature vector. This simple feature vector has worked quite well in many 
implementations. To be more robust to resolution and pose issues, a resolution pyramid 
could be used followed by affine transformation.  
 
Once the feature vectors have been generated, the normal SVM training procedure can be 
employed. Features for the test images are generated in the same way as the training 
samples and are then classified using the trained SVM. 
 
 
SVM Implementation 
 
 

 
 
 
 
The above flowchart shows the basic idea behind the SVM implementation. Each 
incoming data vector is stored in a buffer, while the SVM model is stored in another 
buffer. The kernel computation unit performs the kernel computation and result 
accumulation for the vector. The result is then transferred to a register, where the MSB of 
the output is the class of the test vector. 
 

ROM 
(model) 

RAM 
(data) 

Address  
generator 

Address  
generator clock 

FP 
multiplier 

FP accumulator 
Output 

Register 



If the data and the model is stored on off board memory, the IO is performed first to get 
them onboard, so as to have faster access. This of course depends on the size of the data 
set. If it is too large, then it is periodically buffered. The main computational units are the 
floating multiplier and the floating point accumulator units. Depending on the type of the 
kernel the multiplication is repeated as many times as required. In my case I implemented 
a linear and a quadratic kernel which is (1+(X.Y))2. So in the linear case there are only N 
multiplications for each sample, where N is the number of features in the feature vector, 
while in the quadratic case there will be 2N multiplications for each sample. If other 
kernels are to be used, a Look up table based implementation is more suitable. For 
example if a Radial basis kernel is to be used a sufficiently large LUT containing pre-
computed Gaussian values can be used. Once the individual multiplications are 
completed, they are summed up in the accumulator and the bias term is added to it to get 
the output. So for each sample there will be N+1 floating point additions. Therefore for 
each sample, in the linear kernel case N multiplications and N+1 additions are required. 
This basic implementation was implemented as a schematic in Quartus. 
 
Implementation on the DE1 board 
 

 
 
The schematic of the Altera DE1 board is shown above. The basic code structure in 
verilog has been provided. This code includes the JTAG interface and the USB blaster. 
The control panel software communicates to the DE1 board through the USB blaster. The 
control panel can  read from the memories SDRAM and SRAM and can also control the 
VGA controller.  
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For the DE1 board I implemented the code in verilog. I started with the DE1 control 
panel code and then added multiplexed interfaces to the SDRAM and SRAM and also 
setting up access for the VGA control from the SRAM.  
 
The structure of the code is as follows 
1) Store the input data (test image in the face detection) and the model on the SDRAM. 
2) The output data is stored on the SRAM. 
3) The SVM module is the main code that reads in the data and performs SVM 
computations and write the output to memory. 
4) In the face detection case, the input image is stored is in the SDRAM and also the 
SRAM 
5) The SVM module then reads in a 20x20 image from the SDRAM and then creates the 
feature vector as described previously. 
6) The SVM computations are performed on this test vector and if it is detected to be a 
face region, a + is marked in the centre of the corresponding window on the SRAM. 
7) The algorithm continues by scanning the image in row order. 
 
There were quite a few problems with the verilog implementation. The problems start 
with verilog, since it is not well suited for complex computations. It started with 
accessing the data from memories, since I started out with a behavioral code instead of 
more suitable structural verilog code (I put it down to my largely C and software 
background ! ). This was causing bus contentions and timing errors as result the data was 
not being read properly.  So I slowly moved parts of the code into structural and finally 
the data access and read and write was successful. Then started the problems with the 
floating multiplications and additions. I used the Altera fpmult and Altera fpadd_sub 
code for the floating point multiplications and additions. These codes have their own 
clock delays which needed to incorporated into the timing. Again, my way of handling 
this problem was a typical C code kind of verilog code with a lot of if-else nested 
structures which didn’t seem to work. As a result the code is still not working. I’m still 
working on modifying the code, basically moving it to better structural verilog design in 
which the timing is lot more easy to handle. A better option which I haven’t explored 
much, would be to move to SystemC. 
 
Another change I feel I need to make is getting rid of the floating point computations by 
moving to a logarithmic number system (LNS). Timing issues are less severe in integer 
arithmetic than in floating point. Thus LNS should work better than floating point. For 
addition in LNS, a lookup table system can be implemented. But one draw back of 
lookup tables is that we need to know the dynamic range of data to determine the size of 
the lookup tables. 
 
The part of the code for the face detection was again beset with the same kind of 
problems. The problem seems to be with the addressing for getting the 20x20 image from 
the memory. Since the image is stored sequentially in the memory an addressing 
algorithm needs to be used to access the pixel that  form the 20x20 window. My current 
code for this is causing bus contentions, i.e the memory is not being in the read in the 



order I want. And added to this problems with the fpmult and fpadd_sub as described in 
the previous paragraph, this code is not working yet. 
 
Results  
 
I have the basic results for the schematic implementation. The input dataset used was the 
Iris dataset from the UCI machine learning repository. The data consists of measurement 
of the some features  of the petals of the Iris flower to determine whether it is of the 
family Iris-setosa or Iris-vestibula. The data consists of 150 samples. Each sample has 4 
real valued features.  
The software SVM implementation was done using freely available svmlight software. 
Svmlight is a commonly used software that is very fast and works quite well for small to 
medium sized data sets.  
 

 Kernel type Hardware Software 

Linear 92.3% 100% 

Quadratic 88.1% 100% 

 
The above table gives the accuracy of classification for the Iris dataset. We see that the 
accuracy for the software is 100%, i.e the 2 classes are perfectly separable. The hardware 
accuracy is significantly less, which I put down mainly to the timing issues. Due to the 
timing glitches  the model and data features go out of sync, which causes the wrong data 
to be multiplied and thus results in the wrong result.  
 
The verilog code for the SVM module is added in the appendix. 
 
 
Conclusion 
 
The project did not work as well as I expected. The schematic SVM implementation 
worked only reasonably well, but the main face detection part did not work at all,  which 
was a huge disappointment. However there are some positives that I draw from this 
project. Firstly this was the first time since I have implemented anything this big in 
verilog and in hardware. So the experience of implementing a complete project was very 
useful. It also gave me a lot of insights into the vast differences between implementing in 
hardware and software. Nothing can be taken for granted when working with hardware, 
where even a small glitch can cause huge errors. Clock synchronization is vital when 
working with hardware and therefore a lot of care needs to be taken when working with 
behavioral verilog code. 
 
I plan to fix the bugs in my code and get it to work as it should. A future improvement 
could be implementing this in SystemC which is much better than verilog. Once it is 



implemented successfully, the face detection algorithm can be easily extended to face 
recognition, which has better than utility than just face detection 
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Appendix A: 
 
svm_module.v 
 
module 
svm_module(iSelect_SR,iSelect_SDR,iDATA,oDATA,oADDR_SDR,oADDR_SR,islow
CLK,ifastCLK,oLED_GREEN,key3,oLED_RED,key2); 
 
//Fixed for reading from SDRam and write to SRAM 
 
input [1:0] iSelect_SR; 
input [1:0] iSelect_SDR; 
output reg [21:0] oADDR_SDR; 
output reg [17:0] oADDR_SR; 
output reg [15:0] oDATA; 
input [15:0] iDATA; 
 
input islowCLK; 
input ifastCLK; 
input key3; 
input key2; 
 
output reg [8:0]  oLED_GREEN; 



output reg [17:0] oLED_RED; 
 
parameter MAX_COUNT = 1000; 
parameter MAX_ADDR = 10; 
reg [15:0] idata; 
 
parameter num_test_points = 30; 
parameter vec_len = 3; 
parameter model_start_address = 481; 
parameter BIAS = 32'h3fe88f6f; //-1*b; 
 
reg model_loaded; 
reg data_loaded; 
reg [17:0] count1; 
reg [17:0] count2; 
reg [17:0] count3; 
reg [31:0] model [vec_len:0]; 
reg [31:0] data [vec_len:0]; 
reg [31:0] temp; 
reg [31:0] result; 
wire [31:0] result1; 
reg [15:0] model_count; 
reg [15:0] data_count; 
reg [15:0] mult_count; 
reg [15:0] data_len; 
wire [31:0] out; 
reg [31:0] data1; 
reg [31:0] data2; 
reg [3:0] byte_count; 
 
wire clk_input; 
reg do_mult; 
reg ALL_DONE; 
reg result_ready; 
reg [5:0] mult_tick; 
 
assign clk_input = ifastCLK & do_mult; 
assign result1 = out; 
 
 
altfp_mult0  m1  (clk_input,data1,data2,out); 
 
initial begin 
count1 = model_start_address; 
count2 = 0; 
count3 = 0; 



model_count = 0; 
data_count = 0; 
data_len = 0; 
result = 0; 
//result1 = 0; 
mult_count = 0; 
do_mult = 0; 
ALL_DONE = 0; 
mult_tick = 0; 
result_ready = 0; 
oLED_GREEN[0] = 0; 
byte_count = 0; 
end 
 
//always @(posedge iCLK or negedge key3)  
//always @(posedge key2 or negedge key3)  
always @(posedge islowCLK or negedge key3)  
begin 
    if(posedge islowCLK) 
 begin 
  count1 = model_start_address; 
  count2 = 0; 
  count3 = 0; 
  model_count = 0; 
  data_count = 0; 
  data_len = 0; 
  result = 0; 
  //result1 = 0; 
  mult_count = 0; 
  do_mult = 0; 
  ALL_DONE = 0; 
  mult_tick = 0; 
  result_ready = 0; 
  oLED_GREEN[0] = 0; 
  byte_count = 0; 
 end 
    else if(iSelect_SDR == 2 && iSelect_SR == 2 && !ALL_DONE)     
    begin 
       if(!model_loaded ) 
       begin 
//              oADDR_SDR = count1 + model_start_address; 
              oADDR_SDR = count1; 
               
              if (byte_count == 0) 
                 temp[31:16] = iDATA; 
              else if (byte_count == 1) 



                 temp[15:0] = iDATA; 
                  
              //oLED_RED = iDATA;    
              count1 = count1 + 1; 
              //oADDR_SDR = count1; 
              byte_count = byte_count + 1; 
              if (byte_count == 2) 
              begin 
      model[model_count]  = temp; 
      if (model_count >= vec_len) 
       model_loaded = 1; 
        
      model_count = model_count+1;        
      byte_count = 0; 
              end 
               
               
       end 
    else if (!data_loaded ) 
    begin 
              oADDR_SDR = count2; 
              if (byte_count == 0) 
                 temp[31:16] = iDATA; 
              else if (byte_count == 1) 
                 temp[15:0] = iDATA; 
               
              oLED_RED = count2; 
              count2 = count2 + 1; 
              byte_count = byte_count + 1; 
              if (byte_count == 2) 
              begin 
      data[data_count]  = temp; 
      if (data_count >= vec_len) 
      begin 
       data_loaded = 1; 
       data_count = 0; 
       data_len = data_len +1; 
       //oLED_GREEN[6:1] = data_len; 
      end 
      data_count = data_count+1;        
      byte_count = 0; 
              end 
                             
       end 
       else if (data_loaded && model_loaded && !result_ready ) 
       begin 



     data1 = model[mult_count];  
     data2 = data[mult_count]; 
     do_mult = 1; 
//                    oLED_RED = result1; 
      
     temp = temp + 1; 
     temp = temp + 1; 
     temp = temp + 1; 
     result = result + result1 ; 
     if (mult_count >= vec_len) 
     begin 
      do_mult = 0; 
      result_ready = 1; 
      data_loaded = 0; 
      mult_count = 0; 
     end 
     mult_count = mult_count+1; 
     do_mult = 0; 
      
 
 
         
       end 
    else if (result_ready) 
    begin 
                oLED_RED = result[31:16]; 
                result  = result + BIAS; 
                oADDR_SR = count3; 
                oDATA = result[31:31]; 
                //oDATA = result; 
                count3 = count3 + 1; 
                if (data_len > num_test_points) 
                begin 
                   ALL_DONE = 1; 
                   oLED_GREEN[0] = 1; 
                end 
                result_ready = 0; 
                result = 0; 
       end 
       
    end 
end 
 
endmodule 
 


